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A composite wave variational method for calculating molecular orbitals has been developed and 
successfully applied to elementary molecules, say H~, C2, LiH, and CH 4. The good results, together 
with the flexibility and computational simplicity of the method, suggest that it will be a useful tool for 
investigating the electronic structure and related properties of complex, polyatomic molecules. 
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Besides the method of LCAO, two more ways of approaching the study of 
electronic levels of molecules have been attempted, which seem to be attractive. 
These are the single-center expansion method by Cohen and Coulson [1] and 
the multiple-scattering model by Johnson [2]. In the former method, the actual 
molecular potential is approximated by a truncated spherical harmonic expansion 
and a similar expansion is used as trial function in solving numerically the Schroe- 
dinger equation. In the latter, a muffin-tin model potential is assumed and the 
one-electron problem is considered on the basis of a Green's function approach 
in the framework of the multiple-scattering approximation.  

Although it was immediately realized that, due to the inherently slow con- 
vergence of the method, the single-center expansion could not be easily applied 
to molecules more complex than the simple class of diatomic molecules, it how- 
ever shows that an accurate description of the electronic levels may be obtained 
only if a very close approximat ion of the actual molecular potential is included 
in the computations.  For  what concerns the multiple-scattering model, it enables 
one to introduce, at the cost of a rough description of the molecular potential, 
a multiple-center expansion for the trial function, thus achieving a quick con- 
vergence also in very complex molecular systems. 

In the present paper we present a method which in our opinion is a compro-  
mise between the above mentioned approaches, in the sense that it makes one 
able to include the full molecular potential in the interatomic space, without 
losing the advantages deriving from a multiple-center expansion for the trial 
function. We account for the molecular potential in the following way: the sphero- 
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symmetric part of the actual potential is considered inside non overlapping 
spheres surrounding the nuclei; as regards the remaining space, we expand the 
actual potential in spherical harmonics with respect to a suitably chosen "center 
of the molecule". 

The search of energy levels and molecular orbitals is performed within the 
framework of the variational principle. According to our description of the 
molecular potential, the trial function is built up in the following way: a linear 
combination of spherical harmonics, Y~,,(O, ~p), times energy-dependent solutions, 
R1(e, r); of the radial Schroedinger equation, is considered inside the spheres; an 
expansion in terms of the eigenfunctions generated by the spherosymmetric part 
of the molecular potential with respect to the center of the molecule is instead 
assumed for the trial function in the remaining space. Analogously to what 
occurs in the APW method for solids, our trial function displays discontinuities 
on the surface of the spheres. For this reason the variational expression for the 
variational energy is written down, according to the suggestion of Schlosser and 
Marcus [3], as 

ev ~ dY2~p*lp= ~ dY2~p*H~p+�89 ~ dS[(O.~p3 +Q.~p*)(~po-lp,)-Op3 +~p* ) 

x (a,w0 - a,w~)]. 

In the above expression Y2 i and Qo denote, respectively, the regions of space 
inside and outside the spheres, where the trial function ~p is separately indicated 
by ~pi and ~Po. (2 denotes the whole space, S the surface of the spheres and 0, the 
outward normal derivative. H is the one-electron operator corresponding to our 
choice of the molecular potential and ~, the variational energy. When expressions 
like 

~P, = Z At,.Rt(e. r) Yz..(O, ~o) (2) 
l ,m 

for each sphere, and 

~Po = ~ ~ B.,,,,R,,l(r) Ylm( '9, q~) (3) 
t~ / ,hi 

for the space outside the spheres are substituted in Eq. (1) and this equation is 
differentiated with respect to Al, ~ and B,,tm according to the variational prescription, 
a secular equation is obtained. The whole procedure for writing down the secular 
equation and the numerical techniques employed for solving it are not too dissimi- 
lar from those used by Schlosser and Marcus in their APW calculation [3], 
apart from the fact that our basis functions in the region outside the spheres 
require the alpha-expansion technique [4] in evaluating the surface integrals. 
According to Schlosser and Marcus, a trial value is given to e which appears 
in Eq. (2), and the search of each eigenvalue 8v at which the secular determinant 
goes to zero, is iterated until self-consistency between e and ev is reached. 

The reliability of our method has first been tested on H~-, a molecular ion 
for which the energy levels are exactly known [5, 6]. Good agreement was found 
between the exact eigenvalues and those obtained by the present method, as it 
is shown on Table 1. On the same Table the values obtained by Smith and John- 
son [7] on the basis of the multiple-scattering model are reported for comparison. 
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Table 1. Electronic energy levels of  H + for the equilibrium internuclear distance R = 2 a.u.  Energies 
~/re in  R y  units 

State of Exact Scattering Present 
united atom values a model b model 

l s a  - 2 . 2 0 5 2 5  - 2 . 0 7 1 6  - 2 . 2 2 5 0  

2 s a  - 0 . 7 2 1 7 4  - 0 . 7 0 7 3 8  - 0 . 7 2 1 8 4  

3sa - 0 . 3 5 5 3 6  - 0 . 3 4 8 5 9  - 0 . 3 5 5 2 4  

2 p a  - 1 .33506 - 1.2868 - 1 . 3 5 6 1  

3 p ~  - 0 . 5 1 0 8 2  - 0 . 4 9 7 2 2  - 0 . 4 9 2 8 8  

4 p ~  - 0 . 2 7 4 6 2  - 0 . 2 6 9 7 9  - 0 . 2 6 2 6 2  

3 d a  - 0 . 4 7 1 5 6  - 0 . 4 5 5 7 4  - 0 . 4 7 5 1 5  

2 p ~  - 0 . 8 5 7 5 4  - 0 . 8 8 8 6 6  - 0 . 8 4 8 7 6  

3d~  - 0 . 4 5 3 4 0  - 0 . 4 4 6 4 6  - 0 . 4 5 2 4 4  

a Ref .  [ 6 ] . -  b Ref .  [ 7 ] .  

Table 2. One-electron energies (in Ry)  o f  C2,  L i H ,  a n d  C H 4  for the equilibrium nuclear configuration 

Molecule Symmetry SCF_LCAO a,b Scattering Present 
model ~'a model 

C z 2 s a  - 2 .0567 - 1.5630 - 2.0321 

3 p ~  - 0 .9662  - 0 .82626  - 0 .96988 

3 p ~  - 0 .8407  - 0 .85906  - 0 .82455 

LiH l a  - 4 . 8 5 1 4  - 4 . 3 7 6 6  - 4 . 8 1 4 2  

2 a  - 0 .5972  - 0 .41048  - 0 .64472  

C H  4 I A  1 - 22 .44  - 21.43 - 21.68 

2A 1 - 1.88 - 1.599 - 1.727 

1 T  2 - 1.082 - 1.024 - 1.072 

a Ref .  [ 8 ] .  - b Ref .  [ 9 ] .  _ c  Ref .  [ 7 ] .  - d Ref .  [ 10 ] .  

As it appears from the Table, our method obtains in most cases the closest agree- 
ment with the exact results. In order to obtain satisfactory convergence, the 
secular equation was set up by including spherical harmonics up to l =  2 for 
what concerns the trial functions both inside and outside the spheres, and spherical 
harmonics up to l - -4  for what concerns the interatomic potential. As regards 
the time required by the whole computation, made without resorting to symmetry 
simplifications, it was less than 4 minutes on an IBM 360/44. 

The method was then applied to multi-electron systems; on Table 2 we report 
the results for the one-electron energies in C2, LiH, and CH4. In such cases 
comparison is made with SCF-LCAO computations [-8, 9], as well as with 
multiple-scattering results [-7, 10]. We note that our results agree with SCF-LCAO 
computations better than results obtained by the multiple-scattering model, 
particularly in the case of C2 where, in contrast to Smith' and Johnson's results, 
our method succeeds in predicting for the pa,  pro levels the same ordering as 
found by Ransil's SCF-LCAO computation. 

In multi-electron systems the actual one-electron potential was generated by 
superimposing atomic SCF charge distributions [-11], and the exchange term was 
accounted for by Slater's approximation [12], which is known to give a rather 
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good agreement with Hartree-Fock one-electron energies in the case of free 
atoms [13]. We note that in the present work our method has been applied 
without requiring self consistency for the charge distribution. However it is not 
difficult to extend the program to a fully selfconsistent form. Preliminary results 
of selfconsistent computations on NHa [14] have shown that our method cor- 
rectly predicts the inversion barrier of ammonia. This critical test has convinced 
us that the present method, due to its accuracy and the modest amount of computer 
time it requires, can be usefully applied to investigate the electronic structure 
and conformational properties of complex molecular systems. 
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